Home| Electronics| Tuxkid | E-cards| Linux & Computer stuff | Graphics, Film & Animation |
Photos | Online-Shop

Content:

Introduction
What is12C?

How 12C/TWI works

The plan

The temperature
sensor

The circuit
Putting everything
together

Using the I12C
communication
How warmisit?
The LCD display
A little GUI

Makeing temperature
data available on the

web

How it works;
Anaog to digital
conversion

How it works; 12C
communication,
Atmega8 part
How it works: 12C
communication,
Linux side

How to mount the
outdoor sensor
Conclusion
References

By Guido Socher
<guido_at_tuxgraphics.org>

fe} Ratfa Sockes

Abstract:

Thisis an update of two articles which | wrote in 2005 about a small
digital thermometer. The circuit seemsto be very popular becauseit is
so simple and still has avery useful and practical application. It isthe
perfect circuit to get started with AVR microcontrollers.

This updated article replaces the articles from 2005 and simplifies the
software as well as the hardware. The original documents from 2005
are linked at the end of this articlein case you still need them.

This thermometer can be used as a standal one thermometer with LCD
display or it can be read out with a PC running Linux, Windows,
MacOSX or solaris. BSD Unix and others are probably also possible
to use for reading the temperatures. No special drivers are needed.



The hardware described here can be ordered from
http://shop.tuxgraphics.org

| ntroduction

When you use such an advanced device as a microcontroller to measure analog or digital signals
then you want of course interfaces to evaluate the data or send commands to the microcontroller. In
all the articles presented here in the past we always used rs232 communication with the UART that
isincluded in the microcontroller. The problem isthat this requires an additional MAX232 chip, 4
extra capacitors and an external crystal osciallator for the microcontroller. In any caseit isalot of
extra parts..... and we can avoid them!

We go here for connectivity vial2C because it isreliable and really easy to build. The amount of
datato transfer between PC and microcontroller is very small (just afew bytes). Speed is therefore
no issue at al.

The LCD display is optional. The software is written such that it isidentical for the hardware with
and without the LCD display.

What is12C?

|2C (prounouce "eye-square-see”) is atwo-wire bidirectional communication interface. It was
invented by Philips and they have protected this name. Thisiswhy other manufacturers use a
different name for the same protocol. Atmel calls 12C "two wire interface" (TWI).

Many of you might already be using 12C on their PCs without knowing it. All modern
motherboards have an 12C bus to read temperatures, fan speed, information about available
memory.... all kind of hardware information. This 12C bus is unfortunately not available on the
outside of the PC (there is no physical connector). Therefore we will have to use something else.

How 12C/TWI works

The datasheet of the Atmega8 (see references) has actually avery detailed description starting on
page 160. | will therefore present here just an overview. After this overview you will be ableto
understand the description in the datasheet.

On the 12C bus you always have one master and one or severa slave devices. The master isthe
device that initiates the communication and controls the clock. The two wires of this bus are called
SDA (dataline) and SCL (clock line). Each of the devices on the bus must be powered
independently (same as with traditional rs232 communication). The two lines of the bus are
normally connected via4.7K pullup resistorsto logically "High" (+5V for 5V ICs). Thisgivesan
electrical "or" connection between all the devices. A device just pulsalineto GND when it wants
to transmit a0 or leavesit "High" when it sendsa 1.



The master starts a communication by sending a pattern called "start condition™” and then addresses
the device it wants to talk to. Each device on the bus has a 7 bit unique address. After that the
master sends abit which indicatesif it wants to read or write data. The slave will now acknowledge
that it has understood the master by sending an ack-bit. In other words we have now seen 9 bits of
dataon the bus (7 address bits + read_bit + ack-bit):

| start | 7-bit slave adr | read data bit | wait for ack | ... data cones here

What' s next?

Next we can receive or transmit data. Data is always a multiple of 8 bits (1 byte) and must be
acknowledged by an ack-bit. In other words we will always see 9-bit packets on the bus. When the
communication is over then the master must transmit a "stop condition”. In other words the master
must know how much datawill come when it reads data from a slave. Thisis however not a
problem since you can transmit this information inside the user protocol. We will e.g use the zero
byte at the end of a string to indicate that there is no more data.

The data on the SDA wireisvalid whilethe SCL is 1. Likethis:

| START | 1] 1] 0 | 1] 0 |

One of the best things about this protocol isthat you do not need a precise and synchronous clock
signal. The protocol does still work when thereis alittle bit jitter in the clock signal.

Exactly this property makes it possible to implement the |2C protocol in a user space application
without the need for akernel driver or special hardware (likea UART). Cool isn't it?

Theplan

As said before we cannot use the PCs internal 12C bus but we can use any external interface where
we can send and receive individual data bits. We will just use the RS232 hardware interface of our
PC. In other words our communication interface is RS232 but we save the MAX 232 hardware,
capacitors, etc...

A USB to RS232 converter can be used if you PC does not have a RS232 port.

The LCD display isoptional but if you add one then you can use this as well as a standalone
thermometer with local LCD display.

The temperatur e sensor

It is possible to get already calibrated temperature sensors (some of



It is possible to get aready calibrated temperature sensors (some of
which talk 12C ;-) but they are quite expensive. NTCs are cheaper and -
almost as good even without individual calibration. If you calibrate

them abit then it is possible to achieve accuracy behind the decimal \
point. -

One problem with NTCs isthat they are non linear. It is however just

amatter of semiconductor physics to find the right formula to correct NTCs are small and
the non linear curve. The microcontroller is alittle computer therefore cheap with
mathematical operations are not a problem. NTCs are temperature reasonable accuracy
dependent resistors. The value R of the NTC at a given temperatureis:
11
R= RN-BB(T_ TN:'
where

R,,= Value of NTC at T,
TN= 25 =+ 273K
B = see datasheet of NTC
T= TC+ 273K

thus Tc,can be written as

1
T.= - 273
T Ryt
i RO
BUURy T+ 273

T or Tcisthe temperature value that we are looking for. Rn is the resistive value of the NTC at
25'C. You can buy 4k7, 10K, ... NTCsso Rnisthisvalue.

Thecircuit

Most of the components are actually for the power supply part. We need a stable reference voltage
for the NTCs otherwise the temperature readings will not be accurate.

Thereisaso an LED connected. It does not cost much and isreally useful for basic debugging and
initial hardware test. The hardware test program test-led.c just causes the LED to blink and is part
of the software package (see download at the end of this article).

The analog to digital converter in the microcontroller is used to measure the voltage on the NTC
which will then be converted into a temperature value.

The Atmega8 has two options on what is used as a reference voltage for the analog to digital
converter. It can use either the 5V (AVcc) or an internal 2.56V reference. For the inside
temperatures we will not need atemperature range which is as big as for the outside sensor. +10'C



to +40' C should normally be sufficient. We can therefore use the 2.56V reference when we
measure the indoor sensor. This gives very high accuracy as the 1024 possible digital values are
then spread over only 0-2.56V that iswe get aresolution of 2.5mV (more accurate than most digital

voltmeters!).
The CD-pin on the RS232 is an input line and it is connected to SDA on the |2C bus. We use it to
read data from the microcontroller. DTR and RTS are output lines. When the PC puts data-bits on

the SDA linethen it just toggles DTR. The 12C-master (here the linux PC) controls the SCL (clock)
line. In other words the clock line is an output line on the rs232.

|27 thermarnether, verslon 21

Pamyerirli

" 1ORF-100nF

—

[E9—famzk

=
a
O
h
o
s
[

COMMI

sLide Socher, fuxgraphics.org

Circuit diagram. Click on the diagram for amore detailed view in PDF.
Note: The LCD display isoptional. Just connect nothing if you do not want to use the LCD display.

Putting everything together

When you assemble the circuit then pay attention to the parts where polarity isimportant:
Electrolyte capactitors, the diode, 78L05, LED and the microcontroller.



Before you solder the microcontroller onto the board you should verify the power supply part. If
this does not work you will not only get incorrect temperature readings but you may also destroy
the microcontroller. Therefore connect external power (e.g a9V battery) and verify with a
voltmeter that you get exactly 5V on the socket pin of the microcontroller. As anext step connect
the circuit to the rs232 port of your linux PC and run the porgram i2c_rs232_pintest with various
combinations of signals.

i2c_rs232 pintest -d 1 -
i 2c_rs232 pintest -d 0 -
i2c_rs232 pintest -d 1 -

000
oORr Rk

This program sets the voltage levels on the RTS (used as SCL, option -c) and DTR (used as SDA,
option -d) pins of the rs232 port. The rs232 port has voltage levels of about +/- 10V. Behind the
Z-diode you should however measure only -0.7 for alogical zero and +4-5V for alogica one.

Insert the microcontroller only after your circuit has passed the above tests.

The complete circuit without LCD display

Using the | 2C communication

Download (see references) the linuxl 2Ctemp tar.gz file and unpack it. The 12C communication is
implemented in 2 files:

i2c_avr.c -- the i2c statenmachine for the atnega8
i2c_mc -- the conplete i2c protocol on the |inux side

| have given the atmega8 the slave address "3". To send the string "hello" to the atmega8 you would
execute the following C functions:

address_slave(3,0); // tell the slave that we will send sonething
i2c_tx_string("hello");
i 2cstop(); // release the i2c bus

on the nmicrocontroller side you would receive this "hello" string with
i 2c_get _received _data(rec_buf);

Very easy. Reading data from the microcontroller is similar. Look at the filei2ctemp_avr_main.c to



see how it works when the temperature readings are done.

How warm isit?

To compile and load the code for the microcontroller run the following commands from the
linuxI2Ctemp package directory.

make
make | oad

Compile the two programsi2c_rs232_pintest and i2ctemp_linux

make i 2c_rs232 pintest
make i 2ctenp_I|inux

... Or just use the pre-compiled versionsin the "bin" subdirectory.

To read temperatures smply run:
i 2ctenp_I| i nux

... and it will print indoor and outdoor temperatures. To make this data available on awebsite |
suggest to not directly run i2ctemp_linux from the webserver because the i2c communication is
very slow. Instead run it from acron job and write from there to a html file. An example script is
included in the README file of the linuxl2Ctemp package.

The LCD display

For the LCD display we use a HD44780 compatible display asit was aready used in previous
articles. These displays are very easy to use in combination with microcontrollers because you can
send them ASCII characters.

| use the same LCD driver code asin all previous articles. The files which implement this LCD
driver arelcd.c lcd.h and lcd_hw.h. They are in the package which you can download at the end of
thisarticle. The interface for this code is really easy to use:

/1 call this once:

/1 initialize LCD display, cursor off
lcd_init(LCD DI SP_ON);

/1 to wite some text we first clear
/1 the display:

lcd clrscr();

lcd puts("Ck the LCD");

/1 go to the second line:

| cd_got oxy(0, 1);

| cd_puts("works!");

The software is written such that it works with both 16x2 and 20x2 LCD displays.

Thereis also atest-Icd.c program which can be use to test the LCD display. After loading the
corresponding test-Icd.hex file into the microcontroller you should see "=OK=" on the display.



F
The complete circuit with LCD display

The LCD display has a contrast pin. Connecting this pin to GND results in maximum darkness of
the display. The total darkness off the display depends however very much on the make of the
display, the viewing angle and power supply voltage level. A change of 0.2V results aready in a

noticeable change of display darkness. In most casesit is quite OK to connect the "CON" pin
directly to GND.

If that gives however atoo dark display then add a voltage divider as shown here:

Since the CON pinis normally directly next to the VCC pin the easiest solution isto solder the 10K
resistors directly to the display and insert the 270 Ohm resistor in the wire that goes to the CON
pin.



A little GUI

For those wo would like to have GUI on their desktop | made areally ssmple gui. It consists just of
2 labels which are used to display the two line output of i2ctemp_linux command (the
i2ctemp_linux is the command which read the temperatures from the circuit via12C):

Now we have areally cool thermometer. With alot of possibilities:

® You can read the temperature locally from the display
® You can have alittle GUI on your desktop
® You can write values with acronjob to alog file to get long term statistics

| will now use the rest of this ariticle to explain a bit the internals of the software.

Makeing temperature data available on the web

Y ou should not run i2ctemp_linux directly from the webserver. It istoo slow. Instead add a contab
entry which runs a script to generate an appropriate webpage e.g every 15 minutes:

The script to run from contab:

#!/bin/sh

webpagefil e=/ home/ htt pd/ htm /t enp. ht n

echo "<h2>Local tenperatures</h2><pre>" > $webpagefile

i2ctenmp_linux | sed -e "s/i=/inside /;s/o=/outside /' >> $webpagefile
echo "--------- " >> $webpagefile

date >> $webpagefile

echo "</pre>" >> $webpagefile

Copy the i2ctemp_linux program to /usr/bin and run the above script e.g from a crontab entry which
looks like this (load a file containing this line with the command crontab):

1,15,30,45 * * * * [the/above/listed/scriptfile

How it works: Analog to digital conversion

The Atmega8 supports two modes. In the continous mode it permanently measures the analog
signals and just triggers an interrupt when the measurement is ready. The application software can
then use thisinterrupt to quickly copy the result from two registersinto avariable.

The other mode is the so called single shot mode. Here only one conversion is done. The single shot
mode is still pretty fast. Including the setup time of the required registers before and the reading out
you can still get 100 conversion per second. Thisis more than fast enough for us. So we use this
mode because it is easier to use in functional programming. We just call afunction and it returns
the ADC values.



The Atmega8 has analog input pins ADCO to ADC3. In addition to this there are the pins AGND
(analog ground, connected to normal ground), AREF (the reference voltage) and AV CC (connected
to +5V).

During analog to digital conversion the analog signal is compared with AREF. An analog signal
equal to AREF correspondsto adigital value of 1023. AREF can be any external reference between
0 and 5V. Without the use of an external reference you can still do precise conversion by either
using an interna reference (2.56V) or AVCC. What is used is decided in the software viathe
REFS0 and REFS1 bitsin the ADMUX register.

The analog to digital converter can convert one of the input lines ADCO-ADCS3 at atime. Before
you start conversion you have to set bitsin the ADMUX register to tell the chip which channel to
use.

A simple analog to digital conversion would then look like this:

unsi gned char channel =0; // measure ADCO
i nt anal og_result;

/1 use internal 2.56V ref:

ADMUX=( 1<<REFS1) | ( 1<<REFS0) | (channel & 0xOf);

/1 ADCSR: ADC Control and Status Register

/1 ADPS2..ADPS0: ADC frequency Prescaler Select Bits

/1 ADEN: Anal og Digital Converter Enable, set this before setting ADSC
ADCSR=( 1<<ADEN) | ( 1<<ADPS2) ;

/1 start conversion

ADCSR| = (1<<ADSC) ;

whi | e(bit_is_set(ADCSR, ADSC)); // wait for result
adl ow=ADCL; // read low first !!

adhi gh=ADCH,;

anal og_resul t =( (adhi gh<<8) | (adl ow & OxFF));

As a software designer you must watch out that you read the lower 8 bits first as the microcontroller
has some locking mechanism to simulate "atomic" reading. After this we have the analog to digital
conversion result available as a number in the analog_result variable. This can the be used
elsewhere in the program. Very easy.

The ADPS register (ADC clock pre-scaler bits) must be set such that the clock frequency divided
by the pre-scale factor is a value between 50 and 200 KHz. The division factor is 2*ADPS (two to
the power of the ADPS bits value). The above setting (ADPS2=1, ADPS1=0, ADPS0=0 = decimal
4 -> 2" =16 -> division factor = 16) is good for a clock frequency of 1IMHz.

The Atmega8 has several possibilities for reference voltage selection. The reference voltage is
compared against our analog input voltage. It is the voltage that corresponds to a digital value of
1023.



REFS0=0, use external AREF, Internal Vref

REFS1=0 turned off
REFS0=0, AV CC with optional external
REFS1=1 capacitor at AREF pin

Internal 2.56V Voltage Reference
with (optional) external capacitor
at AREF pin

REFS0-1,
REFS1=1

An optional capacitor on the AREF pin can be used to suppress noise and stabilize the AREF
voltage (in case you switch between differnt voltage levels. remember that it needs time to charge
the capacitor).

How it works: 12C communication, Atmega8 part

| explained already in the beginning of this article how this 12C protocol works. Let’s now have a
look at the software. The Atmega8 has hardware support for |2C communication. Therefore you do
not actually need to implement the protocol. Instead you need to implement a state machine. This
tells the Atmega8 what to do next. Here is an example:

An 12C packet with our own slave address was received. The Atmega8 will now call the function
SIGNAL(SIG_2WIRE_SERIAL) with the status code 0x60 (for other events we would get other
codes).

-->We must now set a number of registersto tell the Atmega3 what to do next. In this case we will
tell it: receive the data part and acknowledge it.

When the actual data was received we will get called with status code 0x80.
--> Now we read the databyte and tell the Atmega8 to acknowledge the next data byte if it comes.

When the communication is over we get a status code 0xAO (stop condition) and we can tell our
application that a complete message was received.

The whole state machine for the 12C slave mode and all possible states are explained in the
datasheet of the Atmega8 on page 183 (see link in reference section at the end of the article).

Transmitting datais very similar. Have alook at the code!

How it works: 12C communication, Linux side

First aword about the hardware. Even though 12C is a bus we only use a point to point connection
between one slave and the Linux PC as 12C master. We can therefore save the pullup resistor as
long as the dlave can still pull down the line without causing a short circuit. We just put a4.7K
resistor into the line.

The voltage levels must be adjusted. The voltage levels on the RS232 side are +/- 10V. Thiswould



be too much for the Atmeag8 but it has also an internal over voltage protection diode. We limit with
the 4.7K resistors the current so much that it is sufficient to relay that protection diode for over
voltage protection.

The Linux 12C software implements basically a complete |2C stack. Thisis because | wanted to
have alittle command line utility which does not need any special library or kernel module. It
should just work on its own.

If you look into the filei2c_m.c (see download) you can see that really every 12C message is build
bit by bit.

To generate the "bits" we must toggle the physical pins on the rc232 interface. Thisis done with
ioctl calls:

/1 set RTS pin:
i nt arg=TlI OCM _RTS;
ioctl(fd, TIOCMBIS, &arg);

... Or to produce a zero:

/1 clear RTS pin:
int arg=TlI OCM_RTS;
ioctl (fd, TIOCMBIC, &arg);

If you want to port this stack to a different OS then you just change these lines. Therest isplain C
and independent of the operating system.

How to mount the outdoor sensor

The outdoor sensor must be protected properly
against rain (and sun). You can try to wrap it into
some plastic but | don’t recommend this. No matter
how tight you tieit, water will eventually comein
and stay in there. The NTC is quite robust and it
does not matter if it getsabit humid aslong asit
can dry again. Use a up-side down mounted tabl et
tube which you leave open at the bottom. This way
any water will be able to get out again.

Conclusion

| am now using the thermometer for 2 yearsand | really like it because you can read it out directly
on the display and you have the possibility to store all the data on your PC. Y ou can view it there,
draw graphs do statistics. Really cool.

The 12C protocol requires very little extra hardware and is optimized for transmitting or receiving
small amounts of data. That is exactly what we need when we want to communicate with our own
microcontroller hardware. It isreally avery nice solution!



References

® Software, documents and future updates. Download page for thisarticle
® shop.tuxgraphics.orthe online shop where you can get all the needed components.

® The old 2005 articles (this article is based on those and replaces them):
O 2005-02: A digital thermometer or talk I2C to your atmel microcontroller

O 2005-03: Part 2 -- A digital thermometer or talk 12C to your atmel microcontroller

<--, tuxgraphics Go to the index
Home of this section

© Guido Socher, tuxgraphics.org

2007-05-14, generated by tuxgrparser version



